IRENA Innovation Week Session: Advancing the frontiers of reliability and quality

Bankability of PV projects: mitigating technical risk

TIN

TÜV Rheinland 2015 – Facts & Figures.

Overview – Solar Energy

- More than 30 years experience in the field of solar energy
- Global network of more than 200 solar experts
- More than 12 GW inspected PV plants world Wide (Europe, North America, South America, Central America, Asia and Africa)
- Research and development in the area of power plant optimization and module qualification (characterization and life time assessment)
- Active participation in the important standardization committees

Quality Assurance and Risk Management of Photovoltaic Projects

Quality Weaknesses in the PV Market

How to solve

these problems?

Product quality is often not given

due to the market situation (high competition, low financial recourses, personnel fluctuation, change of suppliers, lack of quality assurance, differences among certifiers and labs)

Project assumptions and feasibility are imprecise

energy yield prediction too optimistic, cleaning concept missing or insufficient, lack of fixed contract requirements, lack of experience, Low quality of planning and installation use of sub- and sub-subcontractors, high competition, lack of knowledge and experience, tight commissioning deadlines, weak quality assurance during construction

Bankability of involved parties often not given

unstable market situation, choose of Tier-1 manufacturers is not only a criteria for bankability, warranties are often not reliable

Quality Monitor 2015: Basis and Results of TÜV Rheinland Study

Basis of the study:

- TÜV Rheinland has more than 12 GW plants inspected world wide (Europe, North America, South America, Central America, Asia and Africa)
- Basis of the study are
 > 100 plants (100 kWp 30 MWp)
 (Main regions: Germany, Europe, RoW)
- Two periods (2012 2013 / 2014 -Q1. 2015)

Categorization:

- Particularly Serious Defects (PSD)
 Immediate action to prevent plant
 breakdown is required
- Serious Defects (SD) Plant operation is possible but defects must be repaired
- Less Serious Defects (LSD)

No compelling need for action but monitoring of development is recommended

Cause of Defects in PV Power Plants Results of TÜV Rheinland internal Study Data (2014/Q1. 2015)

2014/ Q1.2015

Main findings:

- 30 % of power plants show serious and particularly serious defects (incl. safety issues) or large number of issues
- > 50 % of defects are caused by installation errors

- - Systematic quality assurance is required
 - Plant inspections and maintenance are important

Particularly serious Defects in PV Power Plants "Immediate Action to prevent Plant breakdown is needed"

2012 / 2013

Examples for Particularly Serious Defects (PSD), Serious Defects (SD) and Less Serious Defects (LSD)

Components	Category	Defects	Example
Modules	PSD SD LSD	 PID – Potential Induced Degradation Undervalued power, glass breakage, delamination Burned junction box Defective backsheet Browning, serious micro cracks Module frame damaged Snail tracks 	Delamination
Inverter	PSD SD LSD	Out of operation Insulation faults Not suitable for local environmental conditions Inverter door without filter	
Connection & distribution boxes	PSD SD LSD	Missing Cover Burned connection, surge protector out of operation Water in distribution box Wrong fuse rating Missing labels Dirt inside	Burned Connection

Examples for Particularly Serious Defects (PSD), Serious Defects (SD) and Less Serious Defects (LSD)

Components	Category	Defects	Example
Mounting structures	PSD	Unstable, damaged Weak anchorage	
	SD	Missing edge protection Screw not fixed in place Module clamp not fixed	
	LSD	Corrosion	Bad foundation
Cabling	PSD	Connector charred/burned Damaged cable	
	SD	Different connector type Not UV resistant Improper insulation Wrong dimensioning	
	LSD	Not fixed (loose) routing	Corroded socked/plug
Potential equalisation	SD	Missing or improperly secured potential equalisation	
& grounding	LSD	No corrosion protection	

Examples for Particularly Serious Defects (PSD), Serious Defects (SD) and Less Serious Defects (LSD)

Components	Category	Defects	Example
Weather station	LSD	No maintenance or calibration logs Wring location or orientation of sensors	
Infra- structure, environ- mental influence	SD LSD	Shading Land-slide due to bad drainage system Fence damaged Refuse at the plant	Shading by vegetation
Communicat ion & monitoring	SD LSD	No communication link to inverter Incorrect data transmission	
Transformer station	PSD SD LSD	Panic lock blocked Insecure access Improper cooling system Refuse in station	

Failure Examples in PV Systems (O&M, Installation, Foundation, Planning)

Failure Examples in PV Systems (Product)

Examples of Yearly Loss of Revenue Factors, Risks

Technical Risk Quantification and assessment

Thank you for Attention !

Jörg Althaus Business Field Manager - Solar Energy Global Director of Competence Center PV Modules

Phone: + 49 221 806 ext. 5222 E-mail: solarenergy@de.tuv.com Web: www.tuv.com/solarenergy Selected reference cases: www.tuv-e3.com/solar

