

COP21: Electric Vehicles (transition) and Renewable Energy

Bert Witkamp, AVERE IRENA Innovation Week, May 12, 2016

The COP21 challenge

Over 1000 scenarios from the IPCC Fifth Assessment Report are shown Source: Fuss et al 2014; CDIAC; Global Carbon Budget 2015

1.5 C implies:

- Emissions peak in 2020
- Zero carbon in 2070
- Developed countries zero carbon in 2060

We have a target!

- But no idea how to do it
- We need to have long term plans
- Plans need to lead to zero carbon

We have passed the tipping point

- COP-21 Paris: faster and further with decarbonisation
 - 1.5 C target
 - Realisation that we need to ACCELERATE decarbonisation
 - TRANSPORT more prominent than ever
 - Disruptive transition is needed and all stakeholders have to commit

- Coal to fracking and improved vehicle milage as alternative?
 - Dead end road which does NOT achieve COP21 targets

COP21: transition to renewable generation & storage, electric drive and smart grid is required *and there is no alternative*

Electric drive:

No emissions & low noise, right sized vehicles: liveable cities !

<u>Renewables + storage + smart grid & charging + electric drive :</u>

Decarbonizes our economy, improves energy efficiency, improves air quality in cities and stimulates economy.

WHERE ARE WE WITH EV'S?

Global EV sales 2015 > 0.5 million

EV's in German OEM product portfolios: 2014 - 2020

Future charging needs

- > 90% of charging @ home or workplace (will evolve to wireless)
 - 95% of daily need without need for charging
- Longer EV range = higher charging power for "fast charging":
 - 2 hours drive = 240 km = 40-60 kWh @ 400 kW = 6 to 9 minutes
- Interoperability of charging stations accross operators & borders
- Smart charging and incentives to deal with "supply-demand"

2015: The outlook has never been so positive

✓ People love there EV's !

- ✓ > 0.5 million EV sales 2015
- ✓ Norway EV > 30% new car sales in 2016 = mass market
- ✓ Electric city buses competitive 2015 2020
- ✓ 250+ km e-range mid sized models in 2016-2017
- ✓ 400-600 km e-range vehicles in 2016-2019
- ✓ Battery prices falling much more rapidly than predicted !

BUT:

- Maximum range too limited
- Fast charging rates are too low
- Electric vehicles too expensive
- Not enough models available

2025: Will EV's become economical?

TRANSITION TO 21-ST CENTURY TECHNOLOGIES

The transition to 21st century technology

A new manufacturing paradigm: EV's are easy to produce and the technology is widely available

Precision mechanical engineered parts and complex emission control system

20th century best in class technology: NOT fit for 21st!

21st century best in class technology

Off-the-shelve electronics and electrical parts

Electric Cars To Cost Same As, Or Less Than ICE Within A Decade

Electric Car Battery Costs Are Falling as Fast as Solar Panel Costs

Source: BNEF, Maycock, Battery University, MIT

Which horse (power) are we betting on?

3x more kW/kg 40x more kW/liter 4x more efficient

ZERO emission LOW noise VERY low maintenance

Technology disruptions are rarely foreseen by industry insiders and experts

- Around or before 2025: EV's likely to be the lowest cost vehicles
- Decarbonisation of transport is not a choice, it has to happen
- EV dominant passenger cartechnology within a decade?
- In 2030 or before all cars sold are electric?

At a certain moment, people will not buy old technology anymore , **especially young people ! People love EV's** ③

Societal needs will shape mobility

electric vehicles are only one aspect of a transforming mobility

Society & cities needs:

- Better air quality
- Lower noise levels
- Carbon neutral
- Walking / cycling
- Public transport
- Car sharing
- Multimodal transport
- Zero-emission zones

Vehicles will be:

- Digital / Connected
- "Software on wheels"
- (Semi) Autonomous
- Electric drive
- Lighter weight
- Right-sized
- Shared (use/ownership)
- Part of a mobility system
- Less in number!

Electric vehicle innovation has only just started....

(20)men

The car as net energy producer!

- generation: 900 kWh in NL
 - 500 kWh / year use:
- 13.500 km / year ۲ I DIJK

Energy efficiency: 3.5 kWh / 100 km.....in 2012

in motion ABB reporte Durrell ENEXIS

40

AVERE

WEINO "SEEULA NP

TU/e Interview

CRUISER CLASS

A wide choice in type of high performance EV's can be expected

EV: HEAVEN SEND GIFT TO UTILITY INDUSTRY

Renewable energy and electric drive: the perfect fit

EV's and US electricity generators

Edison Electric Institute on Transportation Electrification:

- "Electrification Is Our Biggest Opportunity"
- "Electric Utilities Need Transportation Electrification"

Pacific Northwest National Laboratory:

• 160 million vehicles can be powered solely from existing off-peak generating capacity

EV: Impact on electricity production & generating capacity

Full scale transition to electric drive in Europe and USA:

- No investments in generating capacity
- In Europe: no investment in high voltage transmission / modest investments at distribution level
- Smart charging is needed (charge at right moment)
- Better asset utilisation = lower cost
- V2G technologies and business models will give additional benefits
- Electrification of transport is a perfect fit with REN:
 - Produces mostly electricity
 - Produces intermittently and need storage & backup

EV (battery) as part of buildings: can be scaled up!

EV storage capacity is scalable to actual local usage scenario

- The car is parked where people are
- Electricity is needed where people are
- Batteries can provide or store electricity

Graphics provided by Nissan

Keep the oil in the ground !

Renewable energy + electric drive

Gobal oil consumption 2014	91 mio barrel/day
Oil used for Road Transport	39 mio barrel/day
Gasoline	22 mio barrel/day
Diesel	17 mio barrel/day
Road transport energy use per day	62,037 GWh
Road transport energy use per year	22,644 TWh
Energy efficiency ICE vehicle:	17% (-83%)
Refining efficiency (US data)	85% (-15%)
Energy efficiency Electric Vehicle	85% (+15%)
Electricity required to replace	3,849 TWh
Global electricity consumption 2012	19700 TWh
Extra electricity requirement	20 %

- Based on current situation
- Excluding off-road vehicles
- Electricity from REN
- Data to be checked!!

- Excluding lubricants/motor oils
- Sources: EIA, DOE, Statistica, IEA, OPEC, wikipedia

Transition to Electric drive: speed of transition essential

Maintain 50% EV growth

- "Giga factories": 2020: 10, 2027: 100
 Smart grid: renewable energy + EV's + V2G
- Produce 100,000,000 electric cars in 2027
- ➤Industrial opportunities

COP21: systems transformation

Innovations: technical, non-technical

- Drive costs down, increase speed of transition
- Leverage « Mission Innovation » and « Breakthrough Energy Coalition »

Which way: dead end road or the right way?

• « Moonshot » policy choice needed! Scenario's needed!

COP21 is largest business opportunity the world has seen since...

BACKUP SLIDES

Committed sofar @ COP21

The emission pledges from the US, EU, China, and India leave little room for other countries to

What we need to do for 1.5C

There is no time for detours or exploring dead-end roads

A common view on the 2050 car sales result of linear or whisful thinking?

Spoilt for choice

5

Light-vehicle sales by technology type, units m

Technology is changing so fast that people have difficulties in understanding this and taking into account

History tells us that a Technology-Zoo scenario is not likely to last long time !

EV's on the road in Europe have NEDC footprint of 30 g CO2/km *factor 4 to 5 lower than ICE*

The weighted average gCO2/kWh of all EV's on the road in Europe:

30 g CO2/km (NEDC cycle)

45 g CO2 / km (real driving) = 4 to 5 times less than ICE

Based on the weighted average of 227 g CO2 / kWh (2013 data)

Many EV drivers & station operators use renewable energy, increasing amounts of renewable energy used for EV's never sees the grid

Who is going to manufacture the vehicles of the future? And where? Multi-trillion \$ industries start investing: IT/Internet/Electronics, Chemical, Power, Automotive

- OEM's ? If they adapt fast enough
- ✓ Tesla (like start ups):
- ✓ BYD, Geely, Foxconn,...
- ✓ Google
- ✓ Apple
- 🗸 Tata, Mahindra
- Other "digital", consumer goods or industrial goods manufacturers....?
- Combinations of any of these?
- Many, many small companies (Light Electric Vehicles!)
- Demographics: volume goes to Asia

Future manufacturing of EV's is "democratic": very easy, low cost, small scale and open for many companies, industries and countries wanting to build up an automotive industry!

OEM's little to gain and a lot to loose?

Electric Vehicles and utilities: how big?

- 2015: 300,000 EV's in Europe,
- 2020: 3 Mio EV's?:
- 2025: 25 Mio EV's:
- 2030: 100 Mio EV's?

3.5 GWh batteries 40 GWh batteries

> 400 GWh batteries

1 GW max power 10 - 15 GW max power > 100 GW max power

- 1 Tesla Giga battery factory: 50 GWh batteries / year, <u>net zero_energy factory: -50% cost</u>
- 10% cars EV's: 10 Giga factories:
- All road trasnport: several hundred Giga factories:

cost reduction per kWh ? !! cost reduction per kWh ?? !!!

- Europe: all cars electric = + 15 20 % electricity consumption
- Europe: all road transport = + 20 25 %

BEV or FCEV efficiency using renewable energy Fuel cell technology requires 3 x more REN then batteries

Solar energy and transport: land use EV's versus Biofuel ICE 200 – 400 x more land needed for biofuel crops

