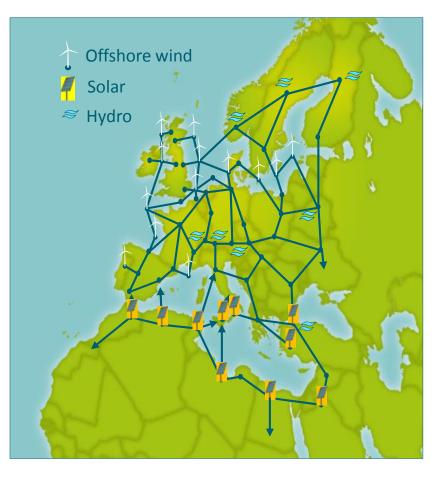
FRIENDS OF THE SUPERGRID

HVDC Technology for Electric Highways

The Future Grid Bonn, 12th April 2016 Peter Lundberg, Product Manager, HVDC, FOSG.

Supergrid Concepts



- A pan-continental grid interconnecting all unsynchronised regions, including off-shore systems
 - Large increase in energy trading capacity
 - Fast balancing of intermittant renewable power
 - Sharing of back-up power sources
 - Better security of supply
- Benefits over the existing AC Grids
 - Much larger interconnection capacity
 - Much longer distances between connection points
 - Agreements between more than two grid operators
 - Mainly using HVDC technology, principally Voltage Source Converter (VSC)

Roadmap Report 2016

- Review of the Technology Readiness Level of the components of a Supergrid
 - VSC technology
 - Cables and overhead lines
 - Off-shore platforms
 - Control systems
 - Protection systems
 - ICT and SCADA systems
 - Storage systems
- Assessment of the future development of technology and systems to 2025 and beyond

Preparation Phase; up to 2015

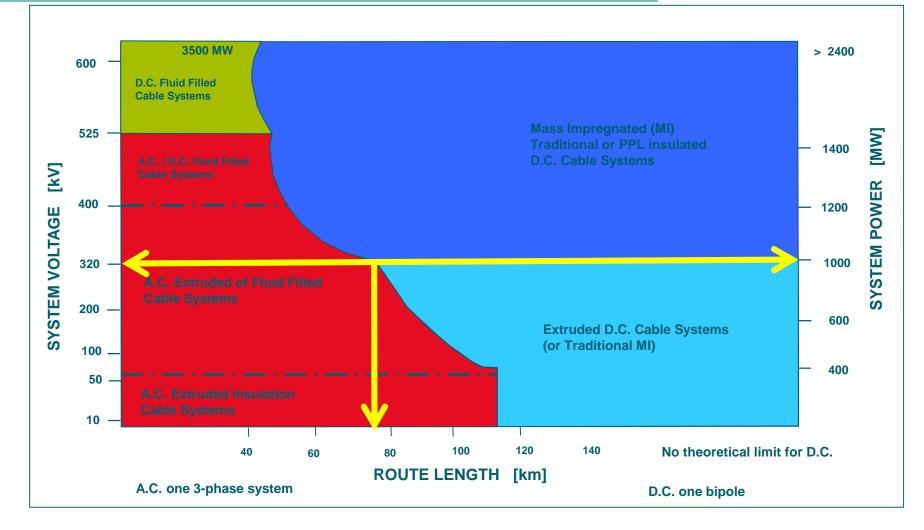
- Progressive shift from LCC to VSC technology
- HVDC links to off-shore wind farms in Germany
- Embedded HVDC links within synchronous grids up to 2000MW
- Interconnectors between asynchronous grids up to 500kV
- Multi-terminal HVDC schemes in China
 - Nan'ao 3 terminal scheme (with future 4th terminal)
 - Zhousan 5 terminal scheme
- 2-terminal schemes designed for future 3rd terminal
 - South West link in Sweden
 - Caithness Moray in UK
- Development of DC circuit breaker technology

Skagerrak Pole 4 : 700MW 500kV VSC Converter Station

Copyright : ABB

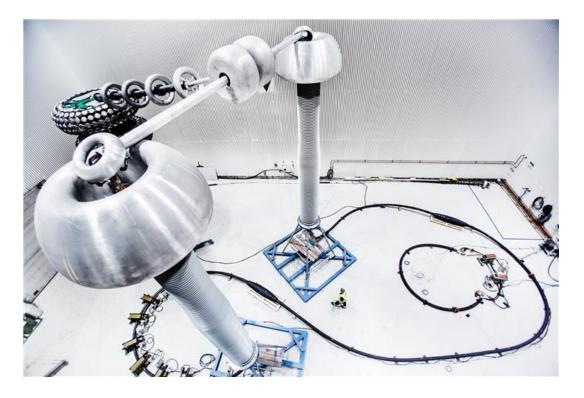
VSC valve hall

INELFE : 2 x 1000MW ±320kV VSC Converter Station, Spain


SylWin Alpha HVDC Platform

AC and DC Cable Comparison

Phase 1: 2015 - 2020


- Rationale for scheme development
 - Evacuation of remote renewable energy sources
- MTDC enabled schemes enter service
 - South West link, Sweden
 - Caithness Moray, UK
- 1000MW @ ±320kV becomes a "de facto" standard
- Bi-pole VSC schemes up to 1600MW
- IGBT devices rated at 2000A from multiple vendors
- MI cables in service up to 600kV
- DC GIS/GIL available up to 500kV

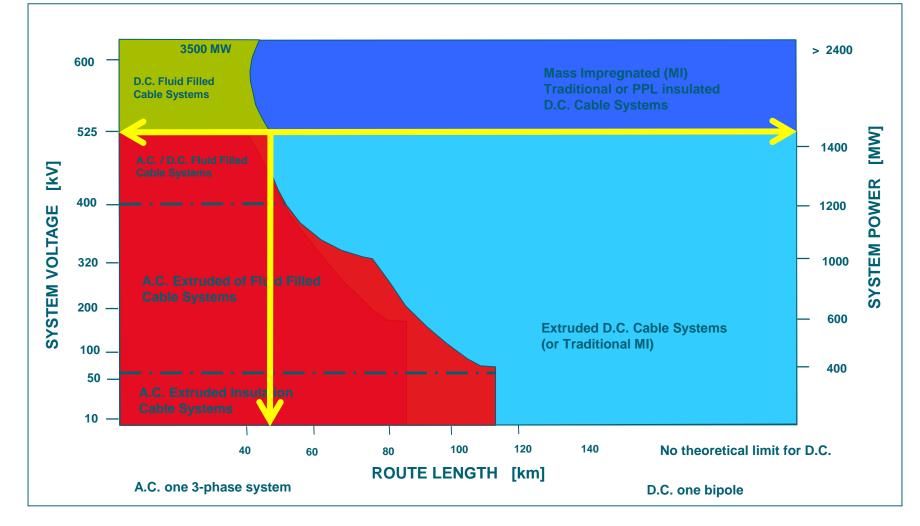
525kV XLPE DC Cable

Cable cross-section

Cable Test Circuit

11

DC Gas Insulated Switchgear (GIS)


Phase 2; 2020 - 2025

- Rationale for scheme development
 - Increased interconnectivity in line with EU target of 10% of generation capacity
- Bi-polar schemes at ±600kV and 2500MW in design and construction
- Use of parallel converters to achieve higher power levels with limited power loss during a pole trip
- Cable technology becomes a key factor
 - MI cable experience at 600kV
 - XPLE in construction at 525kV
- Overhead line schemes in operation at ±500kV

AC and DC Cable Comparison

Phase 3: After 2025

- Rationale for the evolution of the Supergrid
 - Aggregation of the disparate HVDC schemes
 - Coordination by ENTSO-E and ACER
- Cable technology moves to higher voltages
 - MI-PPLP to >600kV
 - XLPE to >525kV
- Control and protection techniques evolve from MTDC systems to grid systems
- DC DC converters; developed in Phase 1, demonstrated in Phase 2 and deployed in Phase 3

Route to the Supergrid

- Key benefits of interconnecting HVDC schemes
 - Higher operational flexibility
 - Greater security of supply
 - Higher utilisation of transmission corridors
- Challenges include
 - Cooperation between multiple TSOs
 - Cooperation between multiple vendors
 - Coordination of system design and operation
- Organisations working to resolve these issues
 - ENTSO-E; Network Code for HVDC
 - CENELEC: working group on DC grids
 - CIGRE: working groups on DC grids

Conclusions

- The roadmap report presents a vision of the Supergrid technologies and their anticipated timeline
- The Supergrid is a significant technological challenge, but there are no insuperable problems
- Interoperability of multi-vendor systems is a key requirement
- Regulatory and economic challenges are still to be resolved
- FOSG Roadmap report (191 pages) available at <u>http://www.friendsofthesupergrid.eu</u>

FRIENDS OF THE SUPERGRID

Interconnecting Electricity for Europe's sustainable growth! www.friendsofthesupergrid.eu

peter.lundberg@se.abb.com