

Dr. Alexandre Oudalov, ABB Switzerland Ltd.; IRENA Innovation Week, Bonn, May 11-13, 2016

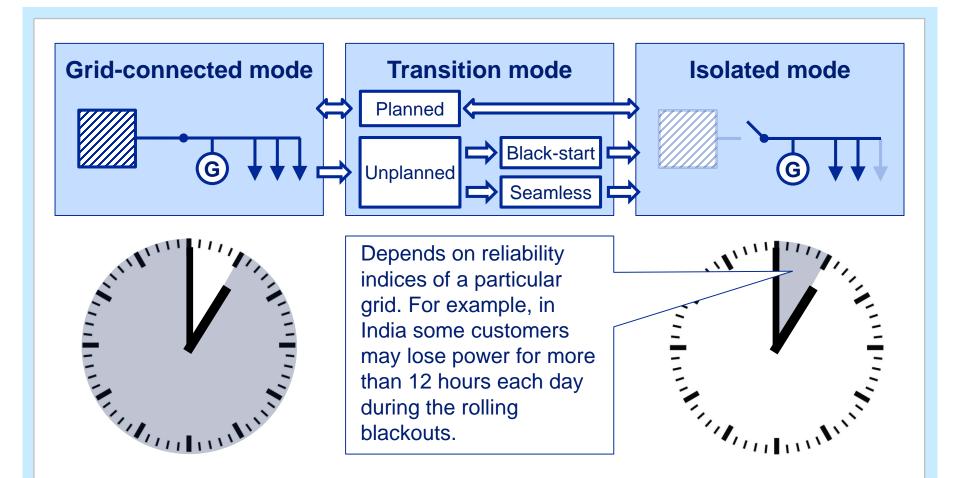
## The Future Grid – deep dive session 1 Smart Minigrids and Microgrids



### Smart Minigrids and Microgrids Definitions

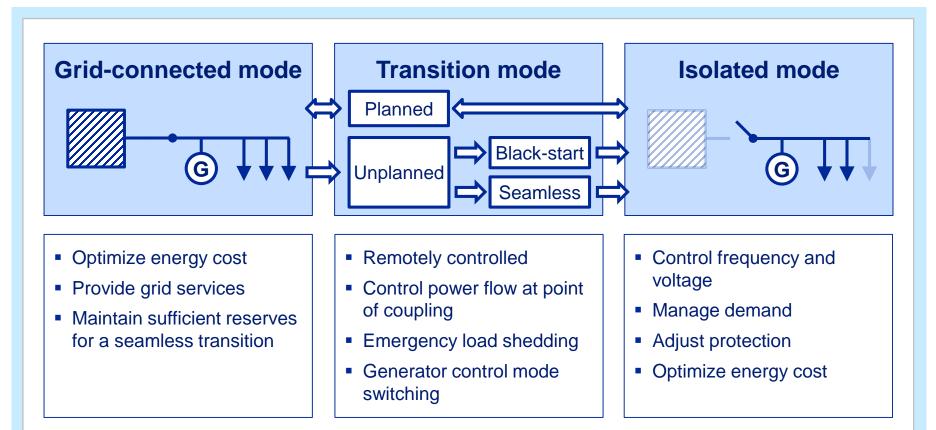
**Microgrids** are "electricity distribution systems containing distributed energy resources and loads that operate in a coordinated way either connected to the main power grid or in "islanded" mode".

**Minigrids** are "a set of electricity generators and possibly energy storage systems interconnected to a distribution network that supplies electricity to a localized group of customers".




### Smart Minigrids and Microgrids Market Segments and Key Drivers

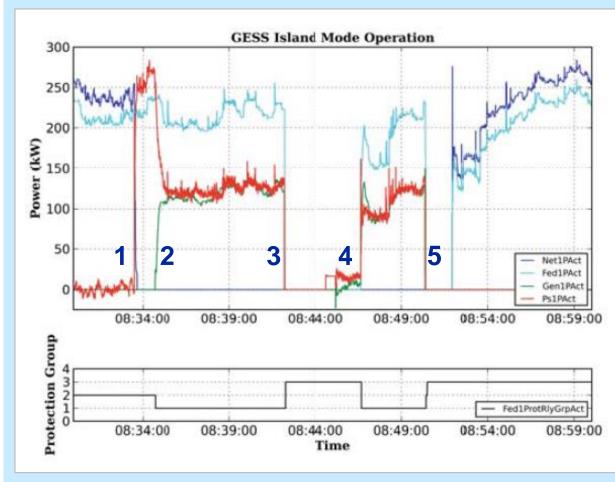
|                | <ul> <li>✓: Main driver</li> <li>(✓): Secondary driver</li> <li>IPP: Independent Power Producer</li> </ul> |                                                                                                | Main drivers          |                        |                                          |                      |                         |
|----------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------|------------------------|------------------------------------------|----------------------|-------------------------|
|                |                                                                                                            |                                                                                                | Social                | Economic               | Environmental                            | Operational          |                         |
|                | Segments                                                                                                   | Typical customers                                                                              | Access to electricity | Fuel & cost<br>savings | Reduce CO2<br>footprint and<br>pollution | Fuel<br>independence | Uninterrupted<br>supply |
|                | Island utilities                                                                                           | (Local) utility, IPP*                                                                          |                       | $\checkmark$           | ✓                                        | $\checkmark$         | (√)                     |
|                | Remote<br>communities                                                                                      | (Local) utility, IPP,<br>Governmental<br>development institution,<br>development bank          | √                     | ~                      |                                          | √                    |                         |
| þ              | Industrial and commercial                                                                                  | Mining company, IPP, Oil<br>& Gas company,<br>Datacenter, Hotels &<br>resorts, Food & Beverage |                       | ~                      | (√)                                      | ✓                    | $\checkmark$            |
| nnecte         | Defense                                                                                                    | Governmental defense institution                                                               |                       | (~)                    | (√)                                      | ~                    | $\checkmark$            |
| Grid-connected | Communities                                                                                                | (Local) utilities                                                                              |                       |                        | (√)                                      |                      | $\checkmark$            |
|                | Institutions and campuses                                                                                  | Public and private education institutions                                                      |                       | (√)                    | ~                                        |                      | (✓)                     |




### Grid Connected Microgrids Operating Modes






### Grid Connected Microgrids Key Functionalities per Mode

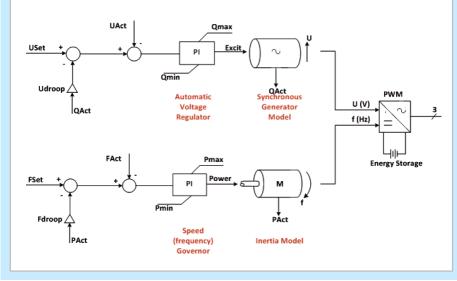


Energy cost reduction and improved reliability are the key objectives.

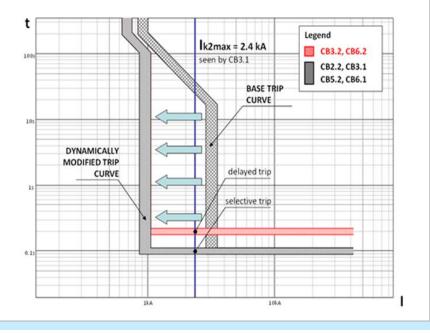


### Real Microgrid Example Different Operation Modes



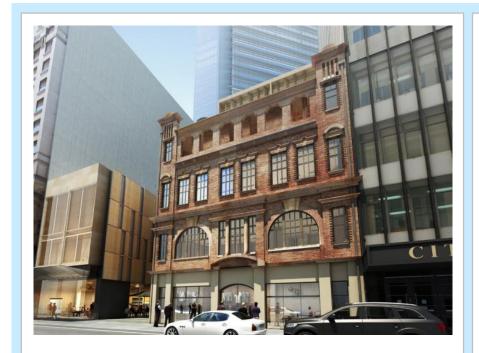

- 1. Planned grid separation storage picks up the load.
- 2. Microgrid control system starts a back-up generator and optimally shares the load between sources.
- 3. Microgrid is shut down.
- 4. Microgrid is restarted (blackstart).
- 5. Microgrid is shut down and the load is re-connected to the grid.

Protection system is tuned according to a microgrid configuration by switching between setting groups.




### Technology Innovation Achieving Stable and Safe Microgrid Operation

- Virtual generator mode of a battery storage
- Operates similar to a traditional synchronous generator
- Provides exceptional response time
- Acts as a grid-forming generation source




- Adaptive protection system monitors microgrid configuration
- Configuration changes result in an automatic update of protection relay settings





### Examples of Grid-Connected Microgrids Biogas & Battery Based Autonomous Building



Project name Location Customer Completion date Legion House Sydney, Australia Grocon, KLM group 2014

#### Solution

- 2 x 180 kW gas engines.
- 1 x 80 kW, 320 kWh lead-acid battery.
- Distributed control system.
- On-site biomass gasification.

#### **Customer benefits**

- The battery stabilizes the internal power network against fluctuations in frequency and voltage.
- Excessive energy is exported to the neighboring buildings.
- Building can operate:
  - in isolated mode, or
  - without gas engines overnight.



### Examples of Grid-Connected Microgrids Ancillary Power System Services for Distribution Grid



Project name Location Customer Completion date Grid Energy Storage Melbourne, Australia AusNet Services 2014

#### Solution

- 1 x 1 MVA diesel generator.
- 1 x 1 MW, 1 MWh lithium-ion battery.
- Distributed control system.
- Transportable containerized solution.

#### **Customer benefits**

- Active and reactive power support during high demand periods.
- Delay of power line investments.
- Transition into isolated operation without supply interruption:
  - on command (planned) or
  - in emergency cases (unplanned)



### Grid Connected Microgrids Technology Innovation Trends

- Electric and thermal grids co-optimization (CHP, heat pumps, etc.)
- Seamless transition (faster controls, high C-rate storage).
- Hybrid energy storage systems (from millisecond to season)
- Smart self-configuring, self-tuning and faster protection.
- Smart converters (communication, grid services).
- Open standards for interoperability (plug and play components).
- Interaction with a hosting grid operator (DSO or TSO).
- Meshed topologies w/ multiple points of coupling to a hosting grid (interconnecting multiple microgrids via b2b DC, nested microgrids).
- Data analytics (RES and demand predictions, asset health mgmt.).
- Integration of electric vehicles (a significant new controllable load).



# Power and productivity for a better world<sup>™</sup>

