Digitalisation for the energy transition: Case Studies

Organised in partnership with

12 June 2025 | 15:30-17:00

#IIW2025

Opening remarks

Yoshiomi Yoshino

Director Ministry of Economy, Trade and Industry (METI) Japan

Moderator

Yasuhiro Sakuma Program Officer Technology and Innovation IRENA

Agenda: Show-casing digital solutions for energy transition

Session 1: Digitalisation for Optimising System Operation with High Share of Renewables

Session 2: Digitalisation for Demand Side Management and Renewables Integration

Join at slido.com #1053254

#IIW2025

Session 1:

Digitalisation for Optimising System Operation with High Share of Renewables

Fernando Llaver SPLIGHT

Rafael San Juan Iberdrola

Kosuke Yamamoto NEDO

Presentation

Fernando Llaver CEO SPLIGHT

SCALABLE GRID TECHNOLOGY

SPLIGHT CONNECTS DIRECTLY WITH FAST-RESPONDING:

- CLEAN ENERGY RESOURCES
 LIKE SOLAR, WIND &
 STORAGE
- LARGE LOADS LIKE DATA CENTERS

TO TURN THEM INTO **SOURCES OF RELIABILITY** TO **DOUBLE THE TRANSMISSION CAPACITY** THAT RENEWABLES AND LARGE LOADS CAN UTILIZE

Problem Splight's Solution Commercial Experience Process

Problem

CAUSE OF THE PROBLEM

System Utilization in major US system operators

Load Factor by Balancing Authority and Season, Load Factor (%), 2016-2024

Problem

Renewable Generators & Large Loads Are Constrained

Generation

- Renewable energy is being curtailed
- New generation sits in years-long interconnection queues
- Existing projects are not providing expected financial returns

Load

- Interconnection requests are being rejected
- Expanding data center sites is becoming impossible
- Millions of dollars are lost due to transmission shortages

Building new transmission lines in time is impossible

Problem Splight's Solution Commercial Experience Process

A New Tool to Increase Grid Reliability

By regulating or disconnecting Fast Responding Assets (FRA) in milliseconds when required by a grid event, Splight's new digital safety layer allows utilization of up to 100% of the grid's physical capacity (2X more than current utilization) while also increasing reliability

Relationship Between Response Time & Capacity

Renewables

- Renewable Generation will see significantly less curtailment and price suppression
- Profitability will increase and bring on new investments
- Utilities can still plan and build upgrades to meet future needs

Large Loads

- Turning Large Loads into grid assets will allow them to expand current sites and speed up getting new projects energized
- ✓ Profitability will increase and bring on new investments
- Utilities can still plan and build upgrades to meet future needs

Problem Splight's Solution Commercial Experience Process

Commercial Experience

Problem Splight's Solution Commercial Experience Process

Process - DCM

Pre-Operation Step Through Operations

Solution Segmentation

A Solution for Every Grid Participant

Set of Solutions	Customer Type				
	Renewables	Batteries	Large Loads	Utilities	System Operators
Operational DCM	DCM As an addition to the technology stack	DCM As an addition to the technology stack	DCM As an addition to the technology stack	DCM As a replacement for Remedial Action Schemes	DCM As an extreme contingency defense scheme
Pre-Operational DCM	Real-time Simulation	Real-time Simulation	Real-time Simulation	Real-time Simulation & Dynamic Line Rating	Real-time Simulation & Dynamic Line Rating
Pre-DCM Intelligence	Intelligent Grid Visualization	Intelligent Grid Visualization	Intelligent Grid Visualization	Grid Planning Intelligence with DCM	Grid Planning Intelligence with DCM

Solution Segmentation

A Solution for Every Grid Participant

The most impactful features of this technology are:

- It is extremely granular and can be deployed in a modular way without interfering with other technical or economic restrictions (Voltage, Tension, SCED, protections systems).
- ✓ Each point of deployment "watches" events on the whole grid, this modularity makes possible not only scalability to avoid overlapping and cascading effects but also brings with it one of the most important factors of network effects: every new DCM increases overall reliability in a factor greater than 1.
- ✓ Finally, it provides full online visibility and real time assessment of what is happening and what would happen "if" an event occurs.

\$66 Million

Additional revenue generated by Splight for a single project in 2024

44.4 GWh

Additional energy injected into the grid due to Splight in the last 12 months

Fernando Llaver

Co-Founder, Chief Executive Officer

fernando.llaver@splight.com

+1 (415) 688-5345

Carlos Caldart

Co-Founder, Chief Revenue Officer

carlos.caldart@splight.com

+1 (415) 889 9246

Problem **Splight's Solution Commercial Experience** Process Appendix

Example - Renewable Generation

Figure 1, depicts a case where a group of inverter-based resources are operating utilizing the maximum capacity allowed under an N-1 evaluation. Transmission owners build and maintain enough surplus transmission capacity, or cushion in the system, so that, if one element fails (i.e., N number of grid components, minus 1, remain standing) no load should even notice.

Therefore, the maximum injection capacity allocated to the generator at these delivery points will be a total of 228 MVA.

Figure 1 Line 1 Capacity: 457 MVA Line 1 Flow: 114 MVA Seneration Substation Utility Substation Utility

.

Line 2 Capacity: 228 MVA Line 2 Flow: 114 MVA

Example - Renewable Generation

Figure 2 illustrates **Splight connecting to the transmission system** to monitor grid status and update real-time capacity.

It integrates directly with the inverter-based resource to

automatically adjust injection during grid failures. Until now we have used physical redundancy of capital plant to achieve reliability; it has been the only real option for over a century. But, today, we can improve the utilization of our grid investment with "intelligence" and real-time communications and controls.

How Splight's DCM Works

- Monitors flow and status of entire transmission system to detect contingencies
- Monitors and controls fast-responding assets, disconnecting or regulating if contingency is detected

Figure 2

Example – Large Loads

Figure 1, depicts a case where a large load is granted the maximum demand capacity allowed under an N-1 evaluation. If one of the transmission lines' exiting the load's substation fails (or some element upstream with similar impact), system operators want to ensure that the demand can be fully met.

Therefore, the maximum delivery capacity allocated to a load at these delivery points will be a total of 140 MW.

Example – Large Loads

Figure 2 illustrates **Splight connecting to the transmission** system to monitor grid status and update real-time capacity.

It also integrates with energy management systems or battery storage to automatically reduce demand during grid failures.

This smart response acts as an N-1 layer, allowing the grid to safely deliver up to twice as much power.

system for contingency

Monitoring and Control

Presentation

Rafael San Juan Global Innovation Manager Iberdrola

Rafael San Juan Moya

IRENA – Innovation Week 2025

Large scale grid optimization

i DE Grupo Iberdrola

>99,000 transformation centres

1.185 transformer substations

>11,4 million smart meters installed and operational

i-DE is the Iberdrola DSO in Spain (IBERDROLA – DISTRIBUCIÓN ELÉCTRICA)

Optimizing grid maintenance activities with AI

In Spain due to regulation all TCs (transformation centers), substations and power plants must be fully inspected and maintained at least **every 3 years**. Meaning the entire grid has a short maintenance cycle.

Preventive maintenance is used to calculate probability of failure and need to replace equipment and optimize the maintenance and to synergize **new investments** and **equipment substitutions**.

Every year, maintenance schedules are planned with the calculated **health index** in mind and planning other work around needed work.

The use case

To use AI, specifically to develop ML (machine learning) models, for preventive maintenance on different types of assets in the network. This improves decisions for maintenance operations, and feeds into different business processes around logistics, inspections or procurement. "Simplicity is the ultimate sophistication".

- Fault rate prediction
- Probability of failure inside a period

Subterranean Power Lines

- Cables
- Cable joints

Aerial Power Lines

ML models for:

- Supports
- Insulators
- Cables

Transformation Centres

- ML models for:
- Indoors
- Outdoors

Available data for the project:

- Previous inspection reports
- Topology maps
- Image databases

- Asset inventory
- Fault reports
- Asset usage reports
- Historic network metrics

Subterranean Power Lines

- Number of joints
- Segment lengths
- Year of installation
- Cable specs

Aerial Power Lines

- Site characteristics reports
- Support type
- Tower material
- Meteorology

Transformation Centres

- Transformer age
- Nº of customers connected
- Component specifications
- Average ambient temp.

The method used

K Iberdrola

Different types of ML models trialed. Some are better suited than others depending on the asset types. The most successful ones tried for these assets are:

- **XGBoost**: (*extreme gradient boosting*) An optimized gradient boosting framework that uses decision trees and is designed for speed and performance, often used in structured data competitions.
- LightGBM: (*light gradient boosting machine*) A gradient boosting framework that uses histogrambased algorithms and leaf-wise tree growth for faster training and lower memory usage on large datasets.

Subterranean Power Lines XGBoost

The results

The **main benefits** of the models created there has been a significant improvement in maintenance operations. Measurable improvements on costs and on Network KPI performance metrics of quality of service (TIEPI and NIEPI).

>100 faults prevented / year

TIEPI and **NIEPI** performance impact due to overall better asset health.

TIEPI (Tiempo de Interrupción Equivalente de la Potencia Instalada), **NIEPI** (Número de interrupciones equivalente de la potencia instalada)

FQI (Fréquence de coupures individuelles) – frequency of individual outages **DQI** (Durée de coupures individuelles) – duration of individual outages

SAIDI (System Average Interruption Duration Index) SAIFI (System Average Interruption Frequency Index)

The **lessons learned** are that the main models for these applications are around decision trees algorithms. Data governance practices will facilitate future projects. Further assets can be included but there is an efficiency threshold.

Presentation

Kosuke Yamamoto

Chief officer New Energy and Industrial Technology Development Organization (NEDO), Japan

[IRENA INNOVATION WEEK 2025] Digitalization for the energy transition: Case Studies

Chief Officer

Grid Interconnection Unit, Renewable Energy Department

New Energy and Industrial Technology Development Organization (NEDO)

Grid constraints under RE penetration

New Energy and Industrial Technology Development Organization

Solution for maximum utilization of grid for RE Non-firm connection

Comparison with Similar Systems in Other Countries

	Japan 🔴	ик 🌺	Germany	US
Grid operator	10 TSOs	National Grid ESO	50Hertz etc.	ERCOT
Congestion- tolerant connection method	Non-firm connection	-Transmission: early connection with assumption of grid reinforcements ** -Distribution: non-firm connection, flexible connection	Early connection with the assumption of grid reinforcements **	Non-firm connection (ERIS)
Congestion management during normal times	Redispatch	-Transmission: re-powering (balancing mechanism) -Distribution: output control, etc.	-Transmission: redispatch + renewable curtailments *** -Distribution: renewable curtailments ***	Nodal pricing based on LMP out-of-market redispatch (including renewable curtailments)
Applicable	Transmission level (66-500kV*) * Varies by TSOs, and includes transmission grids.	-Transmission level (275- 400kV) -Distribution level (-132kV)	-Transmission level (220kV, 380kV) -Distribution level(-110kV)	-Transmission level (69kV-)
Characteristics the transmission system	Loop, Mesh (multiple loops), Radial	mesh	mesh	Radial

** Output control is compensated ***Redispatch 2.0 and later re-powered

NEDO Project for non-firm connection and manage

2020-2023FY

- To develop a system for non-firm connection & manage and demonstrate through field tests.
- Partners: TEPCO Power Grid, Hokkaido Electric Power Network, Tohoku Electric Power Network, Hitachi, Shikoku Instrumentation etc. (Total 12 partners)

New Energy and Industrial Technology Development Organization

An Example of Test Results

Confirmed that each power generator was able to control output within the command from the system.

Started considering non-firm connection

6

Trends in considerations and contract applications for non-firm connection

Although RE curtailment due to grid constraints has not occurred,

thermal power curtailment due to grid congestion occurred within the TEPCO Power Grid area in January 2025

New Energy and Industrial Technology Development Organization

Remaining challenges in grid congestion

Utilize storage batteries and other resources to minimize output curtailment of connected renewable energy

Installed capacity of stationary battery energy storage systems in Japan

New Energy and Industrial Technology Development Organization

Field Demonstration Test at the NEDO FLEX DER Project

2022-2024FY

To develop a DER flexibility system to mitigate congestion in distribution systems caused by RE by monitoring the operational status of DERs and controlling them to shift demand, without resorting to curtailment of RE output.

powergrid@ml.nedo.go.jp

Q&A:

Digitalisation for Optimising System Operation with High Share of Renewables

Fernando Llaver SPLIGHT

Rafael San Juan Iberdrola

Kosuke Yamamoto NEDO

Join at slido.com #1053254

#IIW2025

í The <u>Slido app</u> must be installed on every computer you're presenting from

How to change contraction

Session 2:

Digitalisation for Demand Side Management and Renewables Integration

Serge Subiron

Mercury Consortium

Tarvo Ong FUSEBOX

Tomoyuki Chinuki Mitsubishi Electric

Presentation

Serge Subiron

President Mercury Consortium

the Energy Devices Interoperability Standard

Serge Subiron President & Executive Director

Future demand will be flexible

200 million new devices by 2030

Source: BNEF

5% Of consumer devices participate in demand reduction programs

Collaborative and non-profit initiative bringing together manufacturers, utilities, regulators, associations and tech providers.

With a mission to:

Develop and promote guidelines for consumer devices — such as EVs, heat pumps, residential batteries, and smart thermostats — to support simple use cases, participate in demand-response programs and energy markets.

Confirmed members

eon Next

Sedf

ConEdison

GivEnergy

mixergy

octopus

蕊 Utilidata

What is a Mercury certification

Response time

DER Functional & Performance Certification 220 mercury

Application Guide: Application Provides example use Guide cases and describes the usage and benefits 220 of the requirements. mercury This document: establishes what is Requirements required for this product type to be 220 Mercury certified. mercury Test Specification

Test Specification: Describes the detailed testing procedure and data to be provided to Mercury.org for certification.

Presentation

Tarvo Ong Founder and CEO FUSEBOX

BUILD SMART NOT HARD

Practical Steps From Energy Assets to Markets

Tarvo Õng CEO of Fusebox

How to leverage flexibility — clearly, simply, and profitably

We're here to make complexity simple

- 33 10+ Years of Flex Expertise
- G We Run Our Own VPP
 - Connection to **8 TSO**s
- ス 5.5 GWh mFRR traded a month
- Active in **all balancing**
- Proven Across Europe

♦♦♦ VPP-as-a-Service

Recognised by

Unlocking Ancillary Markets

Day 1

Connect Your Energy Assets

Enabling smart

asset control

Month 1 **Optimise Energy**

Fusebox wherey.

with Fusebox EMS

Localised asset

management

Quarter 1

Enter Ancillary Markets

Year 1+

Scale Your Asset Portfolio

Day 1 Connect & Integrate Your Assets

Fusebox

.energy

Forecasting & control for hybrid sites

- Manage local generation, storage, and load
- Maximum self-consumption
- Price arbitrage

lower tariffs

negative price penalties

0€

20% higher

JUNE 2025

Quarter 1 Enter Ancillary Markets

JUNE 2025

Year 1+ Scale Your Asset Portfolio

Fleet-wide VPP. Central management.

Benefits

- Unlock value from asset-to-TSO integration
- Use one SaaS platform across regions
- Stack value via ancillary services
- Offer new services to your clients
- Link to 3rd-party trading desks for extra gains

70 MWh

C&I assets aggregated in 1 year

5.1 GWh

traded on ancillary markets in 1 month

CASE STUDY Mid-sized renewable energy provider

- Integration of C&I size assets
- Imbalance reduction by 70%
- Time saved 2 years to ancillary
- Connection to 3rd-party trading desk
- OPEX savings €2.5M €5M/5 years

Thanks!

Contact Us Tarvo Õng tarvo@fusebox.energy fusebox.energy

Presentation

Tomoyuki Chinuki

Senior Engineer Mitsubishi Electric

Digitalization for the energy transition: Case studies Sub-session 2: Digitalisation for Demand side Management and Renewable Integration

Digital Energy Solutions of Mitsubishi Electric

June 12th

IRENA Innovation week 2025

MITSUBISHI ELECTRIC CORPORATION

MITSUBISHI Mitsubishi Electric Corporation at a glance Changes for the Better

Head Office:	Tokyo, Japan
Established:	1921 (Over 100 years)
Consolidated Revenue:	5 Trillion yen (= USD 37Billion)
Employees: (consolidated)	~150,000
	(As of March 31, 2024 / USD=140JPY)

Products by business domains

Factory Automation Systems

Automotive Equipment

Systems/Services

Semiconductors &Devices

© Mitsubishi Electric Corporation

MITSUBISH Changes for the Better Changes for the Better

Diverse product portfolio

3

Actual use case and solution #1 Battery EMS ("BLEnDer RE") for reliable grid operation

Use Case#1 EMS batteries <Customer needs>

(Transmission Owner, Japan)

Situation and Challenges:

- Hokkaido area has a large potential for wind turbines(WTs) and has a need to send electricity to Mainland.
- However, there are <u>several grid operational challenges</u> caused by the small grid capacity and insufficient available capacity.
- Clients decided to install large amount of WTs and BESS under insufficient capacity

 \Rightarrow BESS control for grid stabilization was needed

Solution Deployed : EMS ("BLEnDer RE") and PCS to control BESS

Benefits:

Reduce WT curtailment : Charge generated power beyond grid capacity, considering SOC constraints
Grid Balance Support: Charge based on TSO instructions when surplus imbalance occurs.

✓ Grid Stabilization: Smooth WT output avoid impacts on frequency/voltage.

Actual use case and solution #2 Flexible Connection for DERs

Use Case#2 Flexible Connection <Customer needs>

(Distribution System Operator, UK)

Situation and Challenges:

- A large volume of connection applications for renewable generation
- Grid reinforcements to fully allow connections were expensive and resulted in long timescales.
- **Needs for cheaper and faster connections** for generators

Solution Deployed :

DERMS* for real-time control

to realize flexible connection since 2019

*Distributed Energy Resources Management System

Use Case#2 Flexible interconnection <Solution>

Flexible Connection

- ✓ a technical and commercial agreement to allow to connect DERs in constrained network areas without the conventional network reinforcement
- ✓ subjects to DERs accepting to have their output curtailed when the network is congested

Benefits :

"UK Power Networks DSO: 2 years on", (UK Power Networks, 2025)

✓ Low-cost and fast renewable energy interconnection

✓ Reduce curtailment through real-time monitoring and control without relying on forecasts.

MITSUBISH ELECTRIC Changes for the Better

IRENA INNOVATION WEEK

Q&A:

Digitalisation for Demand Side Management and Renewables Integration

Serge Subiron

Mercury Consortium

Tarvo Ong FUSEBOX

Tomoyuki Chinuki Mitsubishi Electric

Join at slido.com #1053254

#IIW2025

í The <u>Slido app</u> must be installed on every computer you're presenting from

How to change contraction

IRENA INNOVATION WEEK

Closing remarks

Yasuhiro Sakuma IRENA

IRENA

Renewables and Digitalisation for a Sustainable Energy Future

Thank you!

IRENA INNOVATION WEEK

Reception at the City Hall

