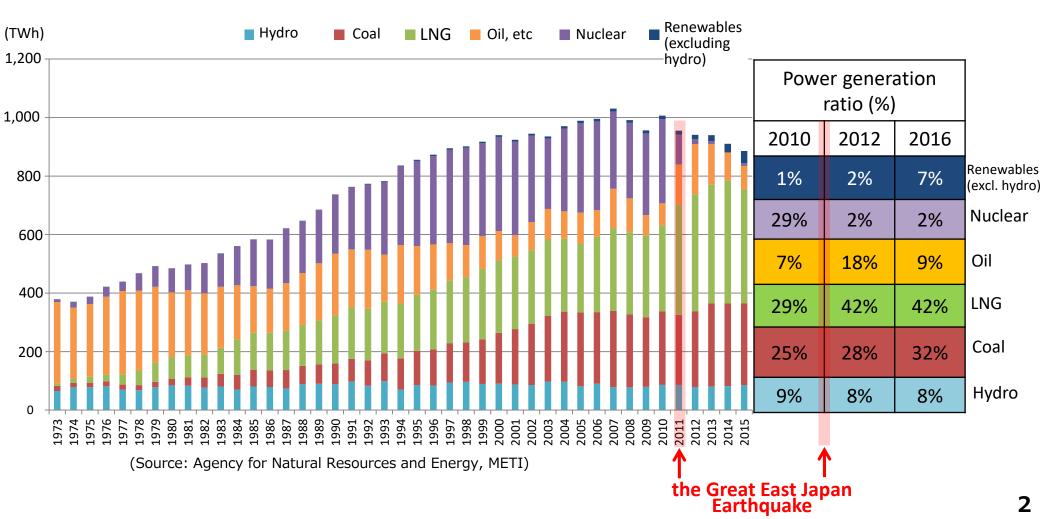

Innovation for Energy Transitions

September, 2018 METI


The history of energy choice & the 5th energy choice

Change in generation mix

• Nuclear has been rapidly replaced by fossil fuels since the Great East Japan Earthquake and the nuclear accident in March 2011

Trend in domestic power generation by technology

Strategic Energy Plan and Energy mix plan

FY2002Basic Act on Energy Policy

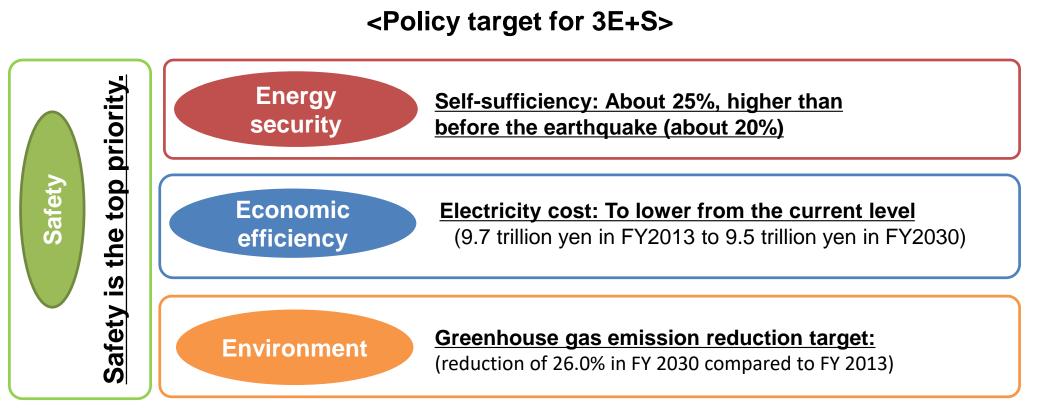
The 1st Strategic Energy Plan, 2003 The 2nd Strategic Energy Plan, 2007 The 3rd Strategic Energy Plan, 2010

 FY2014
 The 4th Strategic Energy Plan

 ONuclear power:
 To reduce as much as possible and restart with safety priority.

 ORenewable energy:
 >20%

FY2015Long-term Energy Supply and Demand Outlook
(Energy mix plan)ONuclear power:20-22% (Before the earthquake: 30%)


ORenewable energy: 22-24%

FY2018 The 5th Strategic Energy Plan

○Towards 2030	\Rightarrow	To achieve energy mix target
\bigcirc Towards 2050	\Rightarrow	Challenges towards energy transitions
		and decarbonisation

Japan's Strategic Energy Plan

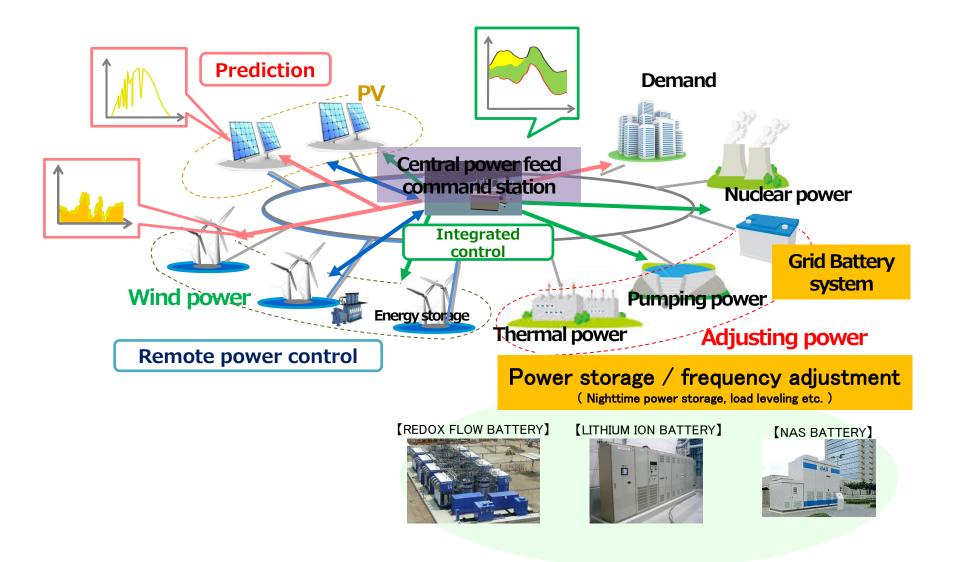
- O Based on the Strategic Energy Plan, Japan tackles the policy targets related to <u>Safety, Energy security</u>, <u>Economic efficiency, and Environment</u> simultaneously.(3E+S)
- O The Plan also refers **reducing dependence on nuclear power generation as much as possible** by promoting energy efficiency and conservation, introduction of renewable energy, and introduction of efficient thermal power plants.

Renewables introduction toward 2030 target

	Before FIT (June 2012)	After FIT [A] (as of Sep 2017)	<u>Target [B]</u> (FY2030)	Progress [A]/[B]
Geothermal	0.5GW	0.5GW	1.4 - 1.6GW	33%
Biomass	2.3GW	3.5GW	6.0 - 7.3GW	53%
Wind	2.6GW	3.4GW	10GW	34%
Solar PV	5.6GW	42.4GW	64GW	66%
Hydro	48.1GW	48.4GW	48.5 - 49.3GW	99%

Ambitious Multi-Path Scenario

2030 Single target **CO2 -26%** Peak 1 Plan 🗎 44% zero-emission power Improve energy efficiency by **4**Action 30% Renewables 2Dowith thermal 2030 backup Thermal Basic Nuclear (lower costs) (achieve high **Energy Plan** (restarts 2018 22~24% efficiency) 3 year outlook with priority 56% on safety) **3**Check Base 22~20% 2050 towards multiple goals Maximum Domestic **Overseas** Next-Domestic **Overseas** introduction renewables Fossil fuel generation **Ambitious vision** renewables renewables with CCS renewables nuclear (Goal): Storage (safety, Hydrogen Hydrogen Seek to surpass low-(Thermal) batteries Hydrogen etc.) carbon and achieve decarbonization ②Orient 1 Observe \sim H_2 (4) Act H_2 H_2 ③Decide 13


Towards 2050: Challenges towards energy transitions and decarbonisation

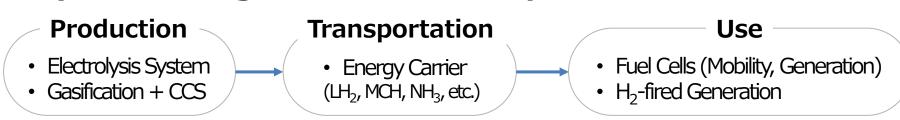
•		,	
	2030		2050
	Advanced utilization of existing technology	N	Creation of future technology
Renewable Energy	 Cost reduction Overcome system 		 Future energy technology Space Solar power Supercritical Geothermal (Magma Power Generation) Coating PV + Next Generation Storage / Supply and Demand Automatic Control System
Fossil fuels	• High-efficiency power generation		 CO2-free by using hydrogen Manufacturing: Super efficient hydrogen production Transportation: liquefaction / transportation of hydrogen Utilization: 100% hydrogen power generation, Next Generation Fuel Cell (FCV, etc) Fixing / Utilization of Carbon Dioxide CO2 utilization Innovative CO2 separation and recovery technology
Heat & Transportation	Industry • Investment in high efficiency equipment Transportation • Improve fuel consumption of automobile		 Innovation of Manufacturing process Hydrogen reduction steelmaking Artificial photosynthesis Automotive electric : Automation EV, PHV, FCV Automatic
Distributed energy	 ZEB/ZEH Cogeneration system VPP 		Distributed and digitized technology <next battery="" generation="" storage=""> • Post lithium • Innovation for stationary type battery <automatic and="" control="" demand="" energy="" supply="" system=""> • AI-driven system • Block-chain technology</automatic></next>

7

Effect of introducing grid battery system

• The grid battery system promotes the introduction of renewable energy, energy conservation, stable power supply and greenhouse gas reduction, etc.

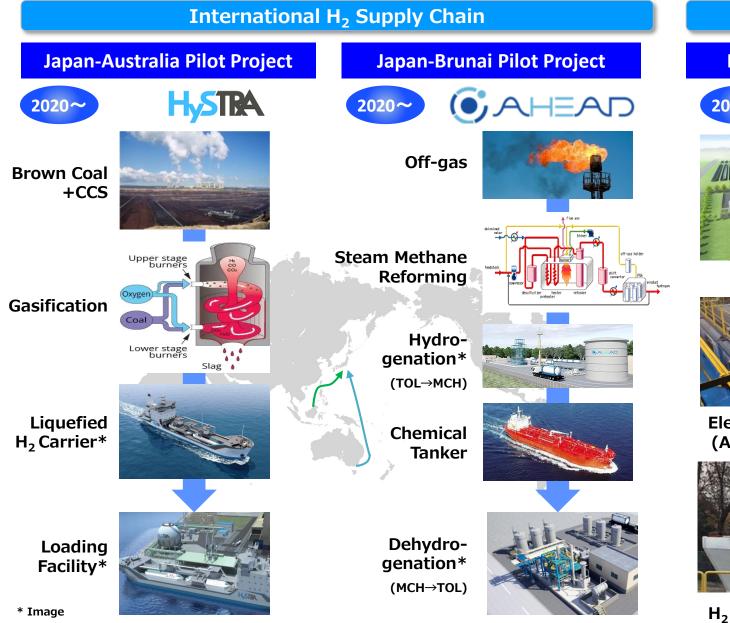
Basic Hydrogen Strategy


- "Basic Hydrogen Strategy" (Prime Minister Abe's Initiative)
 - ✓ World's first national strategy
 - ✓ 2050 Vision: position H₂ as a new energy option (following Renewables)
 - ✓ Target: make H_2 affordable (\$3/kg by 2030 ⇒ \$2/kg by 2050)

3 conditions for realizing affordable hydrogen

[Supply] $\begin{cases} ① Inexpensive feedstock (unused resources, renewables) \\ ② Large scale H₂ supply chains \\ [Demand] ... ③ Mass usage (Mobility <math>\Rightarrow$ Power Generation \Rightarrow Industry)

Key Technologies to be Developed

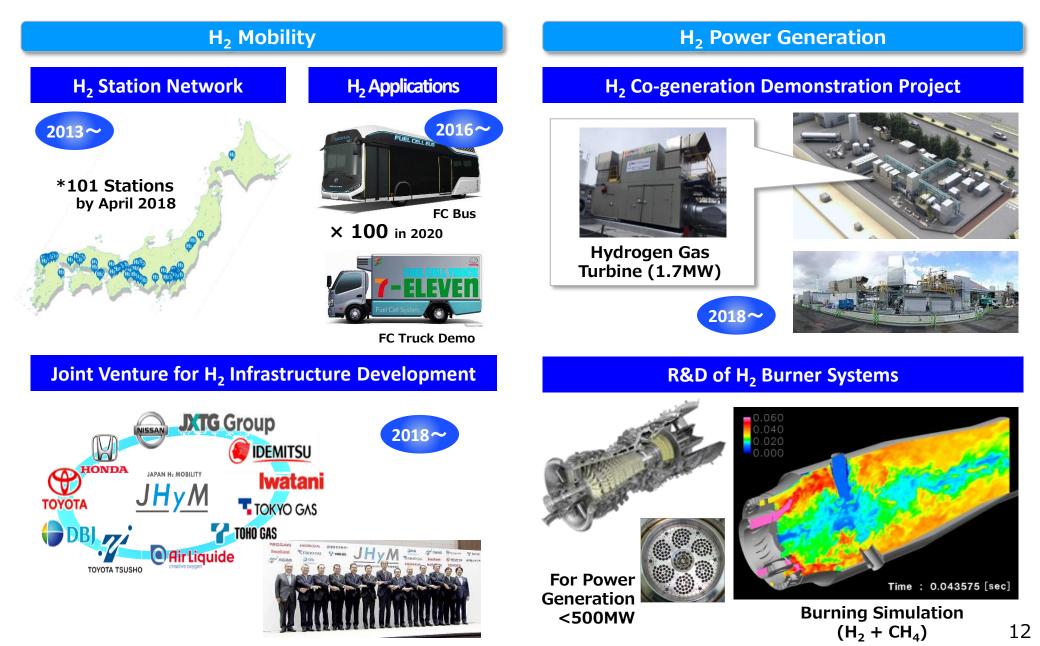

Scenario

			Current	2020	2025	> 2030	2050
Supply			Domestic H ₂	(RD&D)	Interna H ₂ Sup Domestic P	ply Chains	\rightarrow CO ₂ -free H ₂
Vo	ume	(t/y)	200	4k		300k	5~10m
Cost (\$/kg) ~10						3	2
	Gene- ration Mobility	Large	Power Plant	(RD&D) ·		-> 1GW	→ 15~30GW
D		FC CH *Prima	P* 250k — ry energy: natural gas.	—— 1.4m —		- 5.3 m-	→ Replace Old Systems
Demand		HRS	100 —	<u> </u>	<u> </u>	- <mark>(900)</mark> -	→ Replace Filling Stations
hd		FCV	2.5k —	—— 40k —	— 200k —	- <mark>800</mark> k-	Replace
		FC Bu	s <u>5</u> —	100		— 1.2 k –	
		FC FL	50 —	<u> </u>		10 k ⁻	
		Indus	try Use		··· (RD&D) ·	>	Expand H ₂ Use 10

Ongoing Projects (Supply-side)

Power-to-Gas Plant*

Electrolysis System (Alkaline)


H₂ Olympic Flame

Tokyo

Ongoing Projects (Demand-side)

Hydrogen Energy Ministerial Meeting

[Purpose]

- Realize hydrogen as key technology and to be a new energy alternative for de-carbonization by connecting resources such as fossil fuel and Carbon Capture, Utilization and Storage(CCUS), or renewable energy
- Harmonize and cooperate for enhancing utilization of hydrogen at a global scale
- Verify and Discuss on
 - Innovative challenges and latest knowledge
 - ✓ Possibility of international cooperation
 - ✓ Future direction

for formulating global initiative on hydrogen

• Date: 23rd October 2018

- Venue: DAI-ICHI HOTEL TOKYO, Japan
- Host: Ministry of Economy, Trade and Industry, Japan
- Attendees : Ministers, Government officials, Private Sectors
- Invited Countries: Australia, Austria, Brazil, Brunei, Canada, China, France, Germany, Iceland, India, Indonesia, Italy, Netherlands, New Zealand, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, South Korea, United Arab Emirates, United Kingdom, United States of America, EC, IEA (24 countries, 1 region, and 1 organization)

